If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+18+9a=0
a = 1; b = 9; c = +18;
Δ = b2-4ac
Δ = 92-4·1·18
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3}{2*1}=\frac{-12}{2} =-6 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3}{2*1}=\frac{-6}{2} =-3 $
| -9c=-10c–7 | | 4k=-6k+10 | | -12=-4+u | | -26=8e+22 | | 9y-3=6y+17 | | -4+6(x-4)=14x+3-8x | | 16w-9w=63 | | 15f-12f+10=17f+1 | | (x+14)=(3x-28) | | 3(w-8)=-42 | | 9g=10g–7 | | 5r+r=-19 | | 8x^2-8=-135 | | 245=180-x | | -7+3m=4m | | 15f-12f+10=7f=1 | | 7z+3=6z | | -5=x/5-3 | | 20=14b | | 3u+15=36 | | 03x5−6x4+14x3−28x2−5x−10=0 | | 6+x/5=21 | | X-9y=-53 | | 5x2+2x+2=0 | | 2(x)(x)+8x=42 | | 5n-10=-35 | | 169=64-y | | 3^(2x-3)=7^x | | 3x-32=9x+58 | | 7x=61=11x-7 | | 2x²+8x=42 | | 72÷x=6 |